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Abstract
Purpose The prognosis for glioblastoma patients remains dismal despite intensive research on better treatment options.
Molecular and immunohistochemical markers are increasingly being investigated as understanding of their role in disease
progression grows. O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation has been shown to have
prognostic and therapeutic relevance for glioblastoma patients. Other markers implicated in tumor formation and/or ma-
lignancy are p53, Alpha thalassemia/mental retardation syndrome X-linked (ATRX), Epidermal Growth Factor Receptor
splice variant III (EGFRvIII), and Ki-67, with loss of nuclear ATRX expression and lower Ki-67 index being associ-
ated with prolonged survival. For p53 and EGFRvIII the data are contradictory. Our aim was to investigate the markers
mentioned above regarding progression-free (PFS) and overall survival (OS) to evaluate their viability as independent
prognostic markers for our patient collective.
Methods In this retrospective study, we collected data on patients undergoing radiotherapy due to isocitrate dehydrogenase
(IDH) wildtype glioblastoma at a single university hospital between 2014 and 2020.
Results Our findings confirm Ki-67 labeling index ≤20% as an independent prognostic factor for prolonged PFS as well as
MGMT promoter methylation for both prolonged PFS and OS, in consideration of age and Eastern Cooperative Oncology
Group (ECOG) status, chemotherapy treatment, and total radiation dose for PFS as well as additionally sex, resection
status, and receipt of treatment for progression or recurrence for OS. Additionally, Ki-67 labeling index ≤20% showed
a significant correlation with prolonged OS in univariate analysis. Modification of the recursive partitioning analysis (RPA)
score to include Ki-67 labeling index resulted in a classification with the possible ability to distinguish long-term-survivors
from patients with unfavorable prognosis.
Conclusion MGMT promoter methylation and Ki-67 labeling index were independent predictors of survival in our
collective. We see further studies pooling patient collectives to reach larger patient numbers concerning Ki-67 labeling
index as being warranted.
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Introduction

Glioblastomas (GBM) account for 15–20% of brain tumors
[1–4] and have a dismal prognosis with median overall sur-
vival (OS) ranging from about 5 to 15 months [3–6]. Stan-
dard treatment consists of maximum safe resection followed
by radio-, chemo-, or radiochemotherapy according to pa-
tient characteristics [7]. Younger patients with good perfor-
mance score (PS) of Eastern Cooperative Oncology Group
status (ECOG) 0–2 receive 60 Gy radiotherapy with con-
comitant and adjuvant temozolomide (TMZ) chemotherapy
according to the Stupp protocol [8]. Elderly patients with
good PS receive hypofractionated radiotherapy in case of
unmethylated O(6)-methylguanine-DNA methyltransferase
(MGMT) promoter or temozolomide (TMZ) chemotherapy
in case of methylated MGMT promoter according to the
NORDIC trial [9]. For elderly patients with an unfavor-
able PS, best supportive care is recommended [7]. In case
of recurrence, an interdisciplinary tumor board evaluates
options for renewed resection, reirradiation, and/or salvage
chemotherapy [7].

Efforts have been made to find reliable prognostic mark-
ers for survival, with increased focus turning to protein ex-
pression and molecular markers due to mounting evidence
of “genotype trump[ing] the histological phenotype” [10].

P53 is a transcription factor which functions as a tu-
mor suppressor via regulation of cell cycle control, apop-
tosis, cell differentiation, and neovascularization [11–13],
and loss of normal p53 function, e.g., via mutation of its
encoding gene, TP53, plays an early role in tumor formation
[14, 15]. TP53 mutations occur mainly, but not exclusively,
in secondary GBM, isocitrate dehydrogenase (IDH) mutant
[12, 13, 16, 17], and can contribute to chemotherapy re-
sistance [18, 19]. To date, no conclusive argument can be
made for a clear correlation of TP53 mutation and survival,
with several studies finding no association [14, 18, 20–24]
whereas some studies showed a survival benefit [13, 25].

Alpha thalassemia/mental retardation syndrome X-
linked (ATRX) plays a role in genomic stability [26]
and regulation of cell division [27]. ATRX mutations cause
genomic instability, non-homologous end-joining (NHEJ),
and alternate lengthening of telomeres (ALT) [28–32],
as well as increasing susceptibility to DNA-damaging
chemotherapy [29]. Loss of nuclear ATRX expression due
to ATRX gene mutation [31] has been correlated with
a survival benefit [33, 34] and is mainly seen in secondary
GBM, IDH mutant [35, 36].

Epidermal growth factor receptor (EGFR) plays a cen-
tral role in cell proliferation, differentiation [37–39], cell
cycle [40], and angiogenesis [41], as well as influencing
DNA repair and contributing to radio- and chemotherapy
resistance [42]. Amplification of the EGFR gene occurs in
30–50% of IDH-wildtype GBMs [5, 13, 16, 43–49] and is

correlated with overexpression of EGFR protein [12, 46,
47, 49]. The most common mutated variant in GBM is
tumor-specific EGFR splice variant III (EGFRvIII) which
results from gene truncation [16, 50–52] and has been as-
sociated with worse survival prognosis [53] and increased
carcinogenicity [54]. Current data concerning the survival
correlation of EGFR are inconclusive, with some studies
showing shorter survival [43, 44, 48, 55] and some studies
showing no correlation [18, 24, 25, 53, 56] with survival.
A large meta-analysis concluded that most studies did not
regard confounders and/or did not differentiate EGFR wild-
type from EGFR mutations and so no clear statement could
be made regardingEGFR status and survival prognosis [57].

Ki-67 is expressed exclusively in proliferating cells [58,
59], with the Ki-67 labeling index (Ki-67 LI; % of cells ex-
pressing Ki-67) correlating closely with histological tumor
grade in gliomas [14, 60–64] and a Ki-67 LI of 10% being
regarded as a reliable criterium for malignancy [65, 66].
Although some studies see Ki-67 LI as a reliable predictor
of survival with higher Ki-67 LI indicating worse prognosis
[14, 58, 66–70], more reliable even than histologic grade
[44, 71] or age [44], other studies could not find this as-
sociation [56, 72–74], possibly due to low reproducibility
of Ki-67 LI detection between laboratories and examiners
[75]. Therefore, the role of Ki-67 LI as a prognostic factor
is still disputed.

O(6)-methylguanine-DNA methyltransferase (MGMT)
is involved in repair of DNA strands by removing geno-
toxic alkyl groups from guanine [76, 77]. Methylation
of the MGMT promoter reduces MGMT expression and
thereby increases sensitivity to alkylating chemotherapy
[78–81]. Therefore, MGMT promoter methylation is con-
sistently correlated with better survival when alkylating
treatment has been performed [24, 82–86].

Our aim was to investigate the markers mentioned above
regarding progression-free (PFS) and overall survival (OS)
to evaluate their viability as independent prognostic markers
for our patient collective.

Materials andmethods

This study was a single-center retrospective cohort study
conducted at the Department of Radiation Oncology of the
University Hospital Marburg. Inclusion criterium for the
study was receipt of radiation therapy due to an IDH-wild-
type glioblastoma during 2014 to 2020. For these patients,
data regarding patient, disease, and treatment characteris-
tics as well as immunohistochemical and molecular marker
status were collected from archived files. Subsequently, pro-
gression-free and overall survival was calculated, with pro-
gression-free survival being defined as time from first diag-
nosis to first progression or relapse in magnetic resonance
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imaging (MRI) or death and overall survival being defined
as time from first diagnosis to death or last follow up.

In our clinic, standard treatment for patients closely fol-
lows guidelines, with patients undergoing maximum safe
resection with 5-aminolevulinic acid fluorescence image-
guided surgical resection (5-ALA-FIGR) or biopsy when
maximum resection is not feasible and subsequent radio-,
chemo-, or radiochemotherapy. Target delineation mostly
follows ESTRO-ACROP (European Society for Radiation
and Oncology - Advisory Committee on Radiation On-
cology Practice) guidelines [87]. Firstly, gross tumor vol-
ume (GTV) is defined as encompassing the resection cav-
ity or residual enhancing tumor in contrast-enhanced T1-
weighted MRI on the one hand (GTV tumor) and as en-
compassing edema in T2-weighted MRI on the other (GTV
edema). Clinical target volume (CTV) is then delineated by
adding a safety margin of 1.5 cm to the GTV tumor and
matching this volume with GTV edema. Lastly, the plan-
ning target volume (PTV) adjusts the CTV for anatomical
features and organs at risk as well as adding 0.5 cm to
account for possible imprecision during patient position-
ing. Radiation techniques used are 3D conformal external
beam radiotherapy and intensity-modulated radiotherapy
(IMRT) and use mainly photon beams with proton beams
being added as an optional 10 Gy boost. Younger patients
with good PS receive radiochemotherapy according to the
Stupp protocol [8], consisting of 60 Gy total dose either as
60Gy of photons or 50 Gy of photons plus a 10 Gy proton
boost with concomitant (75mg/m2) and adjuvant (1 course
150 mg/m2 day 1–5+ 5 courses 200 mg/m2 day 1–5) TMZ.
Since 2019, these patients have also received lomustine
(CCNU; 6 courses 100mg/m2 lomustine day 1+ 100 mg/m2

TMZ day 2–6) according to the CeTeG/NOA-09 protocol
[88] when the MGMT promoter is methylated. According
to the NORDIC/NOA-08 trial [9], elderly patients receive
34 to 40.5 Gy total-dose radiotherapy when the MGMT
promoter is unmethylated and either the same or TMZ
alone when the MGMT promoter is methylated. In case
of recurrence, further therapy is discussed in an interdis-
ciplinary tumor board and patients receive either renewed
resection whenever feasible and/or reirradiation either with
carbon ions (CIRT) or fractionated stereotactic radiother-
apy (FSRT) with photons and/or salvage chemotherapy ei-
ther with TMZ (as a prolonged or dose-intense course) or
lomustine [89].

Protein expression was determined by neuropathological
evaluation of biopsy or resection tissue. Immunohistochem-
istry was performed as described previously [90]. In brief,
heat-induced epitope retrieval was performed with either
citrate or ethylenediaminetetraacetic acid (EDTA) accord-
ing to the manufacturer’s protocol of the respective primary
antibody. Sections were incubated for 1 hour with the fol-
lowing primary antibodies: anti-p53 (1:100; Dako M7001,

Agilent Technologies, Inc., Santa Clara, CA, USA), anti-
ATRX (1:150; Sigma HPA 001906, Sigma-Aldrich Chemie
GmbH, Taufkirchen, Germany), anti-EGFRvIII (1:50; Zy-
tomed MSK029-05, Zytomed Systems GmbH, Berlin, Ger-
many), and anti-Ki-67/MiB-1 (1:200; Dako M7240, Agi-
lent Technologies, Inc., Santa Clara, CA, USA). Sections
were washed and incubated with post-block solution and
horse radish peroxidase (HRP) polymer reagent according
to the manufacturer’s protocol of the ZytoChem-Plus HRP
Polymer Kit (Zytomed Systems GmbH, Berlin, Germany).
According to the World Health Organisation (WHO) classi-
fication of tumors of the central nervous system (2021, [91])
a strong nuclear expression of p53 in more than 10% of tu-
mor cells and cytoplasmic EGFRvIII expression of either
partial or entire tumor were defined as positive, respectively.
Nuclear ATRX loss was diagnosed in case of negative tu-
mor cells among positive endothelial cells serving as an
internal control. Ki-67 LI demonstrates the percentage of
immunoreactive tumor cells from all tumor cells.

MGMT promoter methylation status was examined by
methylation-specific polymerase chain reaction (MSP) as
described previously [92, 93]. In brief, DNA was isolated
from paraffin sections of the tumor using the DNeasy
Blood and Tissue Kit (QUIAGEN GmbH, Hilden, Ger-
many). A total of 500ng DNA was treated with sodium
bisulfite using the EZ DNA Methylation Gold Kit (Zymo
Research Corp., Irvine, CA, USA). The primer sequences
used to detect unmethylated MGMT promoter sequences
were 5-TGT GTT TTT AGA ATG TTT TGT GTT TTG
AT-3 and 5-CTA CCA CCA TCC CAA AAA AAA ACT
CCA-3. The primer sequences used to detect methylated
MGMT promoter sequences were 5-GTT TTT AGA ACG
TTT TGC GTT TCG AC-3 and 5-CAC CGT CCC GAA
AAA AAA CTC CG-3.

For data collection and analysis, we used IBM® SPSS®

Statistics (version 21; IBM Corp., Armonk, NY, USA). The
prevalence of investigated variables as well as the calcu-
lation of means and standard deviations was obtained by
descriptive statistics. Kaplan–Meier survival analysis was
used to determine progression-free and overall survival. All
tests with p< 0.05 were then included in univariate anal-
ysis (log-rank test) for comparison of survival probability.
Following this, all tests with p< 0.1 were included in multi-
variate analysis using a Cox proportional hazards model to
analyze possible dependencies. Lastly, tests with p< 0.05 in
multivariate analysis were considered significant. Wilcoxon
signed-rank test was used for analysis of Ki-67 LI change
upon recurrence.

The study was inspected and approved by the Ethics
committee of the Philipps-Universität Marburg (ethics vote
“Studie 166/18”).
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Table 1 Patient characteristics in the overall collective

n (%)

Total 137 (100)

Sex

Male 82 (59.9)

Female 55 (40.1)

ECOG at primary diagnosis

0 50 (36.5)

1 44 (32.1)

2 19 (13.9)

3–4 7 (5.1)

Unknown 17 (12.4)

Location of primary tumor

Frontal lobe 32 (23.4)

Temporal lobe 32 (23.4)

Parietal lobe 17 (12.4)

Other 16 (11.7)

>1 area 40 (29.2)

Marker status

ATRX expression

Yes 125 (91.2)

No 6 (4.4)

Unknown 6 (4.4)

EGFRvIII overexpression

Yes 56 (40.9)

No 74 (54.0)

Unknown 7 (5.1)

p53 overexpression

Yes 116 (84.7)

No 10 (7.3)

Unknown 11 (8.0)

MGMT promoter

Non-methylated 52 (38.0)

Methylated 84 (61.3)

Unknown 1 (0.7)

Ki-67 LI

≤20% 82 (59.9)

>20% 50 (36.5)

Unknown 5 (3.6)

ECOG Eastern Cooperative Oncology Group status, ATRX Alpha
thalassemia/mental retardation syndrome X-linked, EGFRvIII Epi-
dermal Growth Factor Receptor splice variant III, MGMT O(6)-
methylguanine-DNA methyltransferase, Ki-67 LI Ki-67 labeling index

Results

Data were collected from patients treated between 2014
and 2020. Median follow-up was 13.4 months. A total of
137 patients were included in the study, with 59.9% be-
ing male (n= 82/137) and 40.1% being female (n= 55/137).
The median age at diagnosis was 63.0 years (24.9–84.6).
ECOG status at diagnosis could be determined for 87.6%

Table 2 Treatment characteristics in overall collective

n (%)

Resection status

Biopsy 18 (13.1)

Partial resection 58 (42.3)

Complete resection 58 (42.3)

Chemotherapy (TMZ/TMZ+CCNU)

Yes 111 (81.0)

No 23 (16.8)

Radiotherapy

60Gy 45 (32.8)

50Gy photons+ 10Gy protons 54 (39.4)

40.5Gy 21 (15.3)

34Gy 7 (5.1)

Other 10 (13.7)

Status

Alive 35 (25.5)

Dead 102 (74.5)

Progression or recurrence

Yes 98 (71.5)

No 39 (28.5)

Treatment of progression or recurrence

Resection only 9 (9.2)

Radiotherapy only 23 (23.5)

Chemotherapy only 5 (5.1)

Combination of two of the above 26 (26.5)

Resection and radiotherapy 12 (12.2)

Resection and chemotherapy 9 (9.2)

Radio- and chemotherapy 4 (4.1)

Combination of three of the above 11 (11.2)

None 24 (24.5)

Re-progression or re-recurrence

Yes 26 (26.5)

No 72 (73.5)

Treatment of re-progression or re-recurrence

Resection only 1 (3.8)

Radiotherapy only 7 (26.9)

Chemotherapy only 4 (15.4)

Combination of two of the above 4 (15.4)

Resection and radiotherapy 2 (7.7)

Resection and chemotherapy 2 (7.7)

None 10 (38.5)

TMZ temozolomide, CCNU lomustine

of patients, with most (82.5%, n= 113/137) ranging from
0 to 2 (Table 1). Tumor localization was diverse (Ta-
ble 1), with complete or partial resection achievable
for 84.6% of patients (42.3%, n= 58/137, each). 71.5%
(n= 98/137) of patients suffered a progression or recur-
rence and 74.5% (n= 102/137) had died by the end of the
data collection period. The majority of patients underwent
chemotherapy, with 81.0% (n= 111/137) receiving either
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Fig. 1 Kaplan–Meier plots and
p-values of Kaplan–Meier sur-
vival analysis for progression-
free survival (PFS) and over-
all survival (OS) regarding Ki-
67 labeling index (Ki-67 LI).
For the overall collective: a PFS
significant with p= 0.014. b OS
significant with p= 0.035. For
partial collective “favorable sub-
group”: c PFS significant with
p= 0.013. d OS not significant
with p= 0.079

temozolomide (TMZ) alone (71.5%, n= 98/137) or TMZ
plus lomustine (CCNU; 9.5%, n= 13/137). Most patients
showed ATRX (91.2%, n= 125/137) and p53 expression
(84.7%, n= 116/137), whilst EGFRvIII expression (40.9%,
n= 56/137) was less common. The MGMT promoter was
methylated in 61.3% (n= 84/137) of patients. Ki-67 LI aver-
aged 20% (0–80%). 72.2% (n= 99/137) of patients received
a total radiation dose of 60Gy, either as sole photon irradi-
ation (45.5%, n= 45/99) or as 50Gy photon irradiation plus
a 10-Gy proton boost (54.5%, n= 54/99).

Details of first and second progression or recurrence as
well as retreatment modalities are listed in Table 2. Me-
dian time to beginning of retreatment after diagnosis of
progression or recurrence was 1.5 weeks. Re-reirradiation
was administered only in case of out-of-field recurrence of
first reirradiation.

For the overall collective, median progression-free sur-
vival (PFS) was 7.5 (6.3–8.6) months. Regarding Ki-67 LI
in the overall collective, median PFS was 8.6 (6.6–10.6)
months for patients with an index of ≤20% compared to 5.7
(4.0–7.5) months in case of >20% (p= 0.014; Fig. 1a). For
MGMT promoter methylation status, PFS in the overall col-
lective was 6.8 (3.6–10.1) months for patients with a non-
methylated MGMT promoter compared to 8.7 (5.5–11.9)
months in case of a methylated MGMT promoter (p= 0.007,
Fig. 2a).

Overall survival was median 15.7 (13.3–18.2) months for
the overall collective. Regarding Ki-67 LI, OS in the overall
collective was median 18.4 (15.2–21.7) months for patients
with an index of ≤20% compared with 14.3 (11.9–16.6)
months in case of >20% (p= 0.035, Fig. 1b). For MGMT
promoter methylation status, median OS in the overall col-
lective was 13.2 (10.9–15.5) months for patients with a non-
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Fig. 2 Kaplan–Meier plots and
p-values of Kaplan–Meier sur-
vival analysis for progression-
free survival (PFS) and overall
survival (OS) regarding O(6)-
methylguanine-DNA methyl-
transferase (MGMT) promoter
methylation status. For overall
collective: a PFS significant with
p= 0.007. b OS significant with
p= 0.017. For partial collective
“favorable subgroup”: c PFS
significant with p= 0.007. d OS
significant with p= 0.018

methylated MGMT promoter compared to 18.8 (17.2–20.6)
months in case of a methylated MGMT promoter (p= 0.017,
Fig. 2b).

For those patients receiving a total radiation dose of
60 Gy (72.2%, n= 99/137), we performed a subgroup
analysis (partial collective “favorable subgroup,” FS)
which showed better ECOG status and lower age (60.6%,
n= 60/99, below median age) than in the overall collective
as well as similar stats for sex, resection status, and rate of
progression or recurrence as the overall collective (Supple-
ment Table S1 and Supplement Table S2). Relatively, more
patients received chemotherapy than in the overall collec-
tive (89.9%, n= 89/99) and by the end of data collection,
fewer patients had died (68.7%, n= 68/99). Again, most
patients showed ATRX (88.9%, n= 88/99) and p53 expres-
sion (83.8%, n= 83/99), with EGFRvIII expression (50.5%,
n= 50/99) more common than in the overall collective. The

MGMT promoter was methylated in 59.6% (n= 59/99) of
patients and 63.6% (n= 63/99) of patients showed equal to
or less than 20% Ki-67 labeling index.

For this favorable subgroup, median PFS was 9.1
(7.6–10.7) months. Regarding Ki-67 LI, PFS was 9.9
(8.5–11.2) months for patients with an index of ≤20% com-
pared to 6.9 (5.6–8.3) months in case of >20% (p= 0.013,
Fig. 1c). Concerning MGMT promoter methylation, PFS
was 7.5 (6.1–8.8) months for patients with a non-methylated
MGMT promoter compared to 10.6 (7.5–13.8) months in
case of a methylated MGMT promoter (p= 0.007, Fig. 2c).

Overall survival was median 18.9 (17.2–20.5) months
for the favorable subgroup. Regarding Ki-67 LI, no statisti-
cally significant difference in OS could be found (p= 0.079,
Fig. 1d). ConcerningMGMT promoter methylation, median
OS was 14.8 (1.6–16.9) months for patients with a non-
methylated MGMT promoter compared to 21.0 (15.7–26.3)

K



Strahlenther Onkol

Table 3 Variables included in multivariate analysis with a Cox
proportional hazards model

Collective Survival Variables

Overall PFS ECOG at diagnosis
EGFRvIII expression
MGMT promoter methylation status*
Ki-67 LI*
Chemotherapy treatment
Total radiation dose*

OS Age at diagnosis*
ECOG at diagnosis
Sex
Resection status*
MGMT promoter methylation status*
Ki-67 LI
Chemotherapy treatment
Total radiation dose
Receival of re-treatment*

FS PFS MGMT promoter methylation status*
Ki-67 LI*

OS Age at diagnosis
ECOG at diagnosis
Resection status*
MGMT promoter methylation status*
Ki-67 LI
Receipt of retreatment*

Variables included had reached p≤ 0.1 in univariate analysis (Log-
Rank Test)
*Variables marked with * reached p< 0.05 in multivariate analysis,
ECOG Eastern Cooperative Oncology Group status, ATRX Alpha
thalassemia/mental retardation syndrome X-linked, EGFRvIII
Epidermal Growth Factor Receptor splice variant III, MGMT O(6)-
methylguanine-DNA methyltransferase, Ki-67 LI Ki-67 labeling index

months in case of a methylated MGMT promoter (p= 0.018,
Fig. 2d).

In case of ATRX and p53 expression, no statistically sig-
nificant differences in PFS or OS could be found for either
the overall collective or for the favorable subgroup (data not

Fig. 4 Decision trees for modified Radiation Therapy Oncology Group/European Organistion for Research and Treatment of Cancer (RTOG/EORTC)
recursive partitioning analysis (RPA) score classes. a Modification of the simplified RTOG RPA classification from 2011 [94] excluding work
status and including age, Eastern Cooperative Oncology Group status (ECOG), and resection status (OP, R resection, B biopsy): RPAmod.
b Further modification of decision tree RPAmod to further include Ki-67 labeling index (Ki67)I: RPAki. Age in years, Ki67 in %

Fig. 3 Forest plot for odds ratios and 95% confidence intervals from
multivariate analysis regarding progression-free survival (PFS) and
overall survival (OS) for Ki-67 labeling index (Ki-67) and O(6)-
methylguanine-DNA methyltransferase promoter methylation status
(MGMT) for the overall collective (OC) and the partial collective
“favorable subgroup” (FS)

shown). EGFRvIII expression was only borderline signifi-
cant for the overall collective (p= 0.050, data not shown).

Multivariate analysis using a Cox proportional hazards
model was conducted for the overall collective and repeated
for the favorable subgroup, and included the variables listed
in Table 3. Regarding Ki-67 LI, increased odds ratios for
an index >20% were statistically significant for the overall
collective and the favorable subgroup regarding PFS but not
for OS. For MGMT promoter methylation status, a decrease
in odds ratio for a methylated MGMT promoter was statis-
tically significant for both the overall collective as well as
for the favorable subgroup regarding PFS and OS. Details
concerning odds ratios can be found in Fig. 3.

Due to the encouraging results regarding Ki-67 LI,
we considered possibilities for integrating Ki-67 LI into
a prognostic score. To this end, we first aimed to test the
existing simplified Radiation Therapy Oncology Group/
European Organistion for Research and Treatment of Can-
cer (RTOG/EORTC) recursive partitioning analysis (RPA)
score [94] in our collective. Because we did not collect
data on the ability of patients to work, we simplified the
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Fig. 5 Kaplan–Meier-plots and
p-values of Kaplan–Meier sur-
vival analysis for progression-
free survival (PFS) and overall
survival (OS) regarding modified
recursive partitioning analysis
(RPAmod) scores in the overall
collective. For RPAmod: a PFS
significant with p= 0.004. b OS
significant with p< 0.001. For
RPAki: c PFS significant with
p= 0.005. d OS significant with
p< 0.001

Fig. 6 Kaplan–Meier-plots and
p-values of Kaplan–Meier sur-
vival analysis regarding change
in Ki-67 labeling index (Ki-67
LI) upon progression or recur-
rence (Ki-67 LI quotient=KI-
67 LI upon initial diagnosis/Ki-
67 LI upon progression or re-
currence). a Overall survival
(OS) from first diagnosis not
significant with p= 0.114. b OS
from diagnosis of progression or
recurrence not significant with
p= 0.131
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score further to exclude this factor (“RPAmod,” Fig. 4a).
Kaplan–Meier survival analysis comparing the resulting
scoring classes III, IV, and V yielded significant p-values
for both PFS (p= 0.004) and OS (p< 0.001) in the overall
collective (Fig. 5) as well as a significant p-value for OS
(p= 0.004) in the favorable subgroup (data not shown),
with significance for PFS being missed (p= 0.097). Fol-
lowing this analysis, we modified our decision tree further
to include Ki-67 LI for patients under 50 years of age, re-
sulting in formation of a new class IIIa (“RPAki,” Fig. 4b).
This improved p-values of Kaplan–Meier survival analy-
sis, resulting in even more significant p-values for OS in
the overall collective (p< 0.001, Fig. 5) and in the favor-
able subgroup (p= 0.003, data not shown). P-values for
PFS changed only slightly (overall collective p= 0.005,
favorable subgroup p= 0.090). Neither RPAmod nor RPAki
could find a significant difference in survival between scor-
ing classes III and IV (RPAmod) or IIIa and IV (RPAki)
per se (RPA mod: PFS p= 0.925/0.704, OS p= 0.075/0.054;
RPAki PFS p= 0.359/0.365, OS p= 0.133/0.104; for overall
collective/favorable subgroup respectively). Furthermore,
for RPAki, score class III contained only 3 patients with
an unusually long PFS (median 12.7 months) and OS (me-
dian 28.4 months), which substantially surpassed median
survival times of any other scoring class.

To better understand the impact of (radio)therapy on Ki-
67 LI, 24 patients were identified for whom Ki-67 LI upon
recurrence or progression had been documented. Most of
these patients (91.7%, n= 22/24) had received 60Gy of pho-
ton irradiation. The quotient of initial Ki-67 LI and Ki-
67 LI upon recurrence or progression showed statistical
significance in the Wilcoxon signed-rank test for reduc-
tion of Ki-67 LI upon recurrence or progression (median
quotient 2, p= 0.003), while the absolute median reduction
of 6% was not statistically significant (p= 0.102). In Ka-
plan–Meier survival analysis, patients with a reduction of
Ki-67 LI upon progression or recurrence (Ki-67 LI quotient
>1) showed a longer OS of 23.1 (17.4–24.5) months com-
pared to 19.5 (12.6–26.5) months for patients with a stable
or increased Ki-67 LI (Ki-67 LI quotient ≤1), although this
difference did not reach statistical significance (p= 0.114,
Fig. 6). Regarding overall survival from time of diagnosis of
progression or recurrence, patients with a reduction of Ki-
67 LI upon progression or recurrence (Ki-67 LI quotient
>1) again showed longer OS of 12.1 (9.1–15.0) months
compared to 9.9 (8.0–11.8) months for patients with a sta-
ble or increased Ki-67 LI (Ki-67 LI quotient ≤1), although
this difference did also not reach statistical significance
(p= 0.131, Fig. 6).

Discussion

Overall, our collective can be seen as representative of
GBM patients, as median age of 63.0 years and overall sur-
vival of 15.7 months correspond to known data [2–6]. The
slightly longer overall survival of 18.9 months in the favor-
able subgroup partial collective might be due to slightly bet-
ter ECOG status in this collective, as a better performance
status has been consistently correlated with improved sur-
vival [56, 67, 71, 74].

Expression of p53 was slightly higher than expected,
with 84.7% of patients showing overexpression compared
with 23 to 69% reported in the literature [17, 95–97].
Notably, in analyses, p53 protein overexpression is often
equated with TP53 gene mutations, since the degradation
of mutated p53 protein is disturbed and p53 subsequently
accumulates [98–100]. However, wildtype p53 can also
be upregulated by diverse cellular stress signals [100,
101] which might account for the discrepancy from the
lower percentages reported for genetically analyzed TP53
mutations (25 to 54%, [12, 13, 16, 101–103]) [104]. Fur-
thermore, the intensity of immunohistochemical staining
can vary in dependence of the antibody and staining method
used and the evaluation of overexpression is subject to the
assessment of the examiner (being, by nature, not a purely
quantitative method). This approach could lead to higher
numbers of cases being classified as overexpressed com-
pared to cut-offs used in other studies (e.g., [105]). In
line with previous studies [14, 18, 20–24], we found no
correlation between p53 expression and survival.

Loss of nuclear ATRX expression in 8.8% of our patients
coincides with other studies (7–12% [35, 36]), with preser-
vation of ATRX adding to malignancy as it is implicated in
DNA repair [27] and TMZ resistance [106]. Although loss
of ATRX expression, which is typically seen in IDH-mu-
tant GBMs, has been linked with better survival even under
consideration of IDH status [33, 34], we could not replicate
these findings, perhaps due to the fact that ATRX expres-
sion was unevenly distributed (91.2% vs. 8.8%). Although
6 patients showed loss of ATRX expression, which is atyp-
ical for IDH-wildtype GBMs, these patients nevertheless
demonstrated a typical course of disease and treatment and
were therefore included in the patient collective.

EGFRvIII expression of 40.9% is slightly more than the
mean expression reported in previous studies as mentioned
above and although EGFRvIII expression showed border-
line significance in Kaplan–Meier survival analysis, this did
not hold up in univariate and multivariate analysis; thus, no
clear statement can be made about a correlation between
survival and EGFRvIII expression.

A median Ki-67 LI of 20% is in line with the malignant
nature and high proliferation of GBMs [65, 66] and aver-
ages approximately in between previously published data
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(11 to 27% [14, 61, 62, 64]). Progression-free survival was
significantly longer in patients with lower Ki-67 LI <20%,
matching previous studies [107–109]. We propose that this
is a result of lower proliferation grade and therefore slower
growth in tumors with lower Ki-67 LI. Furthermore, Ki-
67 LI was not correlated with time to re-progression or re-
recurrence, whereas retreatment was shown to have a signif-
icant impact on overall survival in our collective regardless
of retreatment modality. Also, while Ki-67 LI had a sig-
nificant impact on overall survival this did not hold up in
multivariate analysis. This could suggest that retreatment
received by our patients was sufficient to compensate for
a possibly more proliferative tumor or that survival time
was not long enough for initial proliferation grade to have
an impact. Some studies have shown a non-significant de-
crease of Ki-67 LI upon recurrence [110, 111], which might
account for lacking significance of overall survival in mul-
tivariate analysis; however, other studies were not able to
find this decrease [108, 112]. The present study was able
to show a tendency toward better OS in patients with re-
duction of Ki-67 LI upon progression or recurrence, with
statistical significance being reached for a median Ki-67 LI
quotient of 2, but with significance being missed for both
an absolute median reduction of 6% as well as for Ka-
plan–Meier survival analysis of Ki-67 LI quotient ≤1 vs.
>1, which could be due to the small sample size (n= 24).
As mentioned above, the role of Ki-67 LI as a prognostic
factor is still disputed due to differing results concerning
impact of Ki-67 LI on survival. A previous study has dis-
cussed suboptimal methodological approaches as a possible
factor in this variance [75]. In our eyes, the strength of the
present study lies firstly in the monocentric approach, see-
ing as Ki-67 LI detection took place at a single laboratory
and with minimal examiner variance, and secondly in the
inclusion of treatment criteria via analysis of the partial col-
lective “favorable subgroup,” making the significant results
regarding Ki-67 LI and PFS more reliable. Furthermore,
our approach of integrating Ki-67 LI into the existing RPA
score allows for inclusion of further prognostic factors and
could, in our eyes, show that inclusion of Ki-67 LI can con-
tribute to an improved assessment of survival. Concerning
a possible impact of Ki-67 LI on treatment stratification, to
our knowledge, no data exist regarding glioblastoma, and
this was also not the focus of our study. However, Ki-67 has
been shown to impact treatment response in neuroendocrine
neoplasms [113], prostate cancer [114], and metastatic lung
carcinoids [115], as well as impacting treatment options for
breast cancer [116–118]. Such promising results in other
malign entities combined with the prognostic value of Ki-
67 LI as seen and discussed in our study emphasize the
need for prospective trials to investigate a possible role of
Ki-67 LI in stratification for treatment of glioblastoma.

MGMT promoter methylation was more common in
our collective than expected, with 60% of patients having
a methylated MGMT promoter compared to 40% in previ-
ously published data [12, 46, 84, 119]. A significantly better
progression-free and overall survival in all collectives is in
line with known data [24, 82–86], with overall survival of
13 months for non-methylated and 18 months for methy-
lated MGMT promoter coinciding with previous studies
(5.3–13 months for non-methylated and 10.3–23 months
for methylated MGMT promoter [3, 83, 86]).

Regarding the modified RPA scores analyzed by us
(Fig. 4), we could show that the combination of age
≥50 years, ECOG >2, and biopsy reliably predicts a bad
prognosis with very short survival (median PFS 4.2 months,
median OS 4.3 months). On the other hand, the combina-
tion of age <50 years, ECOG 0, and Ki-67 LI ≤20% might
be able to identify the small collective of long-term GBM
survivors irrespective of resection status, as it did in our
collective. In our view, this conclusion is underscored by
the fact that p-values of Kaplan–Meier survival analysis
differentiating between score classes III and IV (RPAmod)
showed lower values when this collective of long-term
survivors was split off utilizing Ki-67 LI ≤20% (RPAki).
The fact that in our collective no differentiation of survival
prognosis was possible between score classes III and IV
(RPAmod) or IIIa and IV (RPAki) might be either due
to the fact that we did not take mental/neurological status
described via working status into account as intended in the
original RPA score [94] or due to the fact that age (younger
vs. older) and ECOG status (lower vs. higher) even each
other out concerning odd ratios.

Conclusion

In our collective of GBM patients, a Ki-67 LI equal to or
lower than 20% was an independent predictor of prolonged
progression-free survival and showed significant correla-
tion to prolonged overall survival. A methylated MGMT
promoter was also an independent predictor of prolonged
progression-free and overall survival. For ATRX and p53
expression, no correlation with survival could be found.
For EGFRvIII expression, a borderline significant correla-
tion was found in Kaplan–Meier survival analysis, which
did not hold up to univariate or multivariate analysis.

We propose that in future, analysis of Ki-67 LI should
also be included as a standard analysis and should be con-
sidered as a prognostic factor for progression-free survival
upon initial diagnosis. In our opinion, further studies regard-
ing change in or conservation of Ki-67 LI upon progression
or recurrence and its influence on time to re-progression
or re-recurrence and overall survival should be considered,
with studies pooling collectives to reach larger patient num-
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bers. In addition, we strongly suggest further evaluation of
Ki-67 LI as part of prognosis scoring systems, as it might be
able to identify long-term GBM survivors. Lastly, prospec-
tive trials to evaluate a possible impact of Ki-67 LI on
treatment stratification are highly recommended.
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